Two New Cycloheptapeptides from Psammosilene tunicoides

by Jun-Mian Tian^a)^c), Jin-Ming Gao^c), Lu Lu^a), Yi-Ren He^a), Yun-Heng Shen^{*a}), Hui-Liang Li^a), Juan Su^a), Run-Hui Liu^a), Lei Shan^a), and Wei-Dong Zhang^{*a})^b)

^a) Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China (phone/fax: +86-21-81871244 (W.-D. Z.), +86-21-81871245 (Y.-H. S.); e-mail: wdzhangy@hotmail.com, shenyunheng9217018@yahoo.com.cn)
^b) King Saud University, Riyadh 11451, Saudi Arabia
^c) College of Science, Northwest A & F University, Yangling 712100, P. R. China

Two new cycloheptapeptides, tunicyclins F and G, were isolated from the roots of *Psammosilene tunicoides*. Their chemical structures were elucidated by extensive analysis of 1D- and 2D-NMR, as well as HR-ESI-MS data. Tunicyclin G contains an unusual α,β -dehydrotryptophan (Δ^{Z} -Trp) residue, which mainly occurs in the cyclic peptides from marine sponge and bacteria.

Introduction. – Continuing our investigation on the chemical constituents of the root of *Psammosilene tunicoides* W. C. WU et C. Y. WU (Caryophyllaceace), a well-known medicinal herb used as anodyne and haemastatic agent in southwest China [1–4], we have previously reported five new cyclic peptides, tunicyclins A – E, and a known cyclic peptide, psammosilenin B [5–7]. Further studies on this plant led to the isolation of two new cycloheptapeptides, tunicyclins F and G (*Fig. 1*). Tunicyclin G contains an unusual α,β -dehydrotryptophan (Δ^{Z} -Trp) residue, which mainly occurs in the cyclic peptides from marine sponge and bacteria [8][9]. Here, we describe the isolation and structure elucidation of these two cyclopeptides.

Fig. 1. The chemical structures of 1 and 2

Results and Discussion. – Compound **1** was isolated as colorless solid ($[\alpha]_D^{20} = -74.6, c = 0.135, MeOH$). The molecular formula was established as $C_{39}H_{51}N_7O_7$ by

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

HR-ESI-MS (positive-ion mode; $[M + H]^+$ peak at m/z 730.3927; calc. 730.3923). The presence of seven amide CO resonances (δ (C) 173.0, 172.9, 172.7, 172.6, 172.4, 171.8, and 169.5), together with seven α -amino acid C-atom resonances (δ (C) 63.0, 61.5, 55.3, 53.4, 52.9, 52.7, and 43.8) in the ¹³C-NMR spectrum (*Table 1*), and five amide H-atom signals (δ (H) 10.20, 9.03, 8.81, 8.69, and 8.38) in the ¹H-NMR spectrum indicated that **1** is a typical cycloheptapeptide. In addition, signals of three Me groups, ten CH₂ groups, among them three bound to N, one CH group, and two Ph groups were also detected in the 1D-NMR spectra of **1**. From ¹H,¹H-COSY and TOCSY experiments, five amino acid spin systems of Pro, Gly, Leu, Pro, and Ala were unambiguously determined (*Fig. 2*) [10][11]. Two Phe residues were undoubtedly determined based on the HMBC correlations (*Fig. 2*) between the β -H-atoms of the two Phe residues (δ (H) 3.69 (Phe^a-H(β_a)), 3.26 (Phe^a-H(β_b)); and 3.65 (Phe^b-H(β_a)), 3.35 (Phe^b-H(β_b))), and the C(1') resonances (δ (C) 139.6 (Phe^a) and 137.4 (Phe^b)) of two Ph groups, respectively. The assignments of the protonated C-atoms were obtained from the HMQC spectrum, in

Residue	$\delta(\mathrm{H})$	$\delta(C)$	Residue	$\delta(\mathrm{H})$	$\delta(C)$
Pro ¹			$H_{b}-C(\beta)$	1.52 - 1.58(m)	
CO		172.7	$H-C(\gamma)$	2.18 - 2.25(m)	25.3
$H-C(\alpha)$	4.55(t, J = 8.0)	63.0	$Me(\delta_a)$	0.78 (d, J = 6.5)	23.6
$H_a - C(\beta)$	2.23 - 2.28(m)	29.3	$Me(\delta_{h})$	1.15(d, J = 6.5)	21.5
$H_{b}-C(\beta)$	2.08 - 2.15(m)		Pro^{5}		
$H_a - C(\gamma)$	2.01 - 2.08 (m)	26.1	CO		172.4
$H_b - C(\gamma)$	1.78 - 1.84(m)		$H-C(\alpha)$	4.77 - 4.83 (m)	61.5
$H_a - C(\delta)$	3.52 - 3.60 (m)	47.8	$H_a - C(\beta)$	2.51 - 2.57 (m)	32.9
$H_b - C(\delta)$	3.52 - 3.60 (m)		$H_b - C(\beta)$	2.26-2.34(m)	
Gly^2			$H_a - C(\gamma)$	1.80 - 1.88 (m)	22.7
CO		169.5	$H_b - C(\gamma)$	1.73 - 1.80 (m)	
NH	9.03 $(t, J = 6.0)$		$H_a - C(\delta)$	3.62 - 3.68 (m)	47.7
$H_a - C(\alpha)$	4.44 (dd, J = 7.0, 12.0)	43.8	$H_{b}-C(\delta)$	3.62 - 3.68 (m)	
$H_{b}-C(\alpha)$	4.30 (dd, J = 6.0, 12.0)		Ala ⁶		
Phe ³			CO		173.0
CO		172.6	NH	8.81 (d, J = 9.0)	
NH	8.69 (d, J = 7.0)		$H-C(\alpha)$	4.83 - 4.89 (m)	53.4
$H-C(\alpha)$	5.31 - 5.37 (m)	55.3	$Me(\beta)$	1.54 (d, J = 7.0)	18.8
$H_a - C(\beta)$	3.69 (dd, J = 9.3, 14.0)	37.5	Phe^{7}		
$H_{b}-C(\beta)$	3.26 (dd, J = 3.5, 14.0)		CO		171.8
C(1')		139.6	NH	8.38 (d, J = 8.5)	
H–C(2')	7.65 (d, J = 7.5)	129.8	$H-C(\alpha)$	5.44 - 5.50 (m)	52.7
H-C(3')	7.36(t, J = 7.5)	128.9	$H_a - C(\beta)$	3.62 - 3.68(m)	38.9
H-C(4')	7.23(t, J=7.5)	126.5	$H_{b}-C(\beta)$	3.35 (dd, J = 8.4, 13.5)	
H-C(5')	7.36(t, J = 7.5)	128.9	C(1')		137.4
H-C(6')	7.65 (d, J = 7.5)	129.8	H-C(2')	7.71 $(d, J = 7.5)$	130.9
Leu ⁴			H-C(3')	7.35(t, J = 7.5)	128.8
CO		172.9	H-C(4')	7.27(t, J = 7.5)	127.2
NH	10.20 (d, J = 5.0)		H-C(5')	7.35(t, J = 7.5)	128.8
$H-C(\alpha)$	4.77 - 4.83(m)	52.9	H–C(6')	7.71 $(d, J = 7.5)$	130.9
$H_a - C(\beta)$	1.97 (t, J = 11.5)	39.6	. ,	. ,	

Table 1. ¹H- and ¹³C-NMR Data of 1 (at 500 and 125 MHz, resp., in C_5D_5N , J in Hz, δ in ppm)

Fig. 2. Selected 2D-NMR correlations for 1 and 2

combination with inspection of the HMBC spectrum. The CO C-atoms of Pro, Gly, Phe, Leu, Pro, Ala, and Phe were clearly assigned to δ (C) 172.7, 169.5, 172.6, 172.9, 172.4, 173.0, and 171.8, based on the observed HMBC correlations between CO groups and α - or β -H-atoms of the same amino acid residues, respectively.

The connectivity of amino acid residues was mainly established by NOESY crosspeaks: Phe³-NH/HN-Gly², Leu⁴-NH/HN-Phe³, Pro⁵-C(α)H/HC(α)-Leu⁴, Phe⁷-NH/ HN-Ala⁶, and Pro¹-C(δ)H₂/HC(α)-Phe⁷ (*Fig. 3*). In conjunction with the HMBC correlations of Gly²-NH/CO-Pro¹ and Ala⁶-NH/CO-Pro⁵ (*Fig. 2*), the backbone of **1** was thus determined as cyclo-(Pro¹-Gly²-Phe³-Leu⁴-Pro⁵-Ala⁶-Phe⁷). The strong NOE correlation between Phe⁷-C(α)H and both δ_a , δ_b H-atoms of Pro¹ suggested the amide bond of Phe⁷-Pro¹ as *trans*. However, the amide bond of Leu⁴-Pro⁵ was determined as *cis* because of the NOESY correlation Pro⁵-C(α)H/HC(α)-Leu⁴. These configurations were further confirmed by the ¹³C chemical shifts of β -C-atom (δ (C) 29.3) and γ -Catom (δ (C) 26.1) of Pro¹, and β -C-atom (δ (C) 32.9) and γ -C-atom (δ (C) 22.7) of Pro⁵, respectively [12].

Fig. 3. Key NOE correlations for 1 and 2

Compound 2 was isolated as colorless solid ($[\alpha]_D^{20} = -73.8, c = 0.155, MeOH$). The molecular formula was established as C₃₄H₄₆N₈O₉ by HR-ESI-MS (positive-ion mode; $[M + H]^+$ peak at m/z 711.3454; calc. 711.3461). Comparison of the molecular formula of 2 with that of tunicyclin C ($C_{34}H_{48}N_8O_9$) revealed that 2 had one unsaturation degree more than tunicyclin C. Furthermore, the 1H- and 13C-NMR spectra of 2 were also very similar to those of tunicyclin C (Table 2). Six amino acid residues of Pro, Ser, Leu, Ala, Gly, and Thr could be unambiguously deduced from their typical chemical shifts, and then confirmed by 2D-NMR experiments (¹H,¹H-COSY, HMQC and HMBC; Fig. 2) [10][11]. Furthermore, only six 'normal' α -amino acid C-atom resonances ($\delta(C)$ 62.0, 57.9, 57.6, 51.7, 51.1, and 43.9) were detected in ¹³C-NMR spectrum of **2**. However, the presence of one 3-substituted indolyl moiety and one trisubstituted C=C bond in 2, and the maximum UV absorbance band of 2 at 340 nm indicated that the cyclic peptide contains an α,β -dehydrotryptophan (Δ -Trp) residue [13]. The presence of the Δ -Trp residue was further confirmed by the HMBC correlations (*Fig. 2*) between the H–C(β) $(\delta(H) 8.60)$ of the trisubstituted olefin and the C-atom resonances at $\delta(C) 130.2$ (C(2') of indolyl group), and 165.9 (CO group of Δ -Trp residue). The CO C-atoms of Pro, Ser, Δ -Trp, Leu, Ala, Gly, and Thr were also assigned to $\delta(C)$ 172.5, 171.0, 165.9, 175.9,

Residue	$\delta(\mathrm{H})$	$\delta(C)$	Residue	$\delta(\mathrm{H})$	$\delta(C)$
Pro ¹			H–C(7')	7.57 (d, J = 7.8)	112.2
СО		172.5	C(7a')		136.5
$H-C(\alpha)$	4.61 - 4.66 (m)	62.0	Leu^4		
$H_a - C(\beta)$	2.24–2.32 (<i>m</i>)	29.3	CO		175.9
$H_b - C(\beta)$	1.97 - 2.05 (m)		NH	8.19(d, J = 9.3)	
$H_a - C(\gamma)$	1.74 - 1.80 (m)	25.2	$H-C(\alpha)$	5.30 (dd, J = 9.3. 3.5)	51.7
$H_b - C(\gamma)$	1.48 - 1.54 (m)		$H_a - C(\beta)$	1.78 - 1.83 (m)	41.4
$H_a - C(\delta)$	3.67–3.74 (<i>m</i>)	48.3	$H_b - C(\beta)$	1.63 - 1.70 (m)	
$H_b-C(\delta)$	3.57–3.64 (<i>m</i>)		$H-C(\gamma)$	1.80 - 1.87 (m)	24.6
Ser ²			$Me(\delta_a)$	0.76 (d, J = 6.2)	22.6
CO		171.0	$Me(\delta_b)$	0.66 (d, J = 6.2)	21.7
NH	8.28 (d, J = 6.8)		Ala^5		
$H-C(\alpha)$	4.96 - 5.00 (m)	57.9	CO		172.3
$H_a - C(\beta)$	4.58 - 4.62 (m)	62.5	NH	11.09 (s)	
$H_b-C(\beta)$	4.21 (d, J = 10.8)		$H-C(\alpha)$	4.29 - 4.35(m)	51.1
Δ^{Z} -Tr p^{3}			$Me(\beta)$	1.73 (d, J = 6.9)	15.9
CO		165.9	Gly^6		
NH	9.46 (s)		CO		170.3
$H-C(\alpha)$		121.6	NH	9.99 (dd, J = 6.3, 5.8)	
$H-C(\beta)$	8.60 (s)	128.0	$H_a - C(\alpha)$	4.60 (dd, J = 17.1, 6.3)	43.9
NH(1')	13.1 (s)		$H_b-C(\alpha)$	3.76 (dd, J = 17.1, 5.8)	
H-C(2')	8.97 (d, J = 2.4)	130.2	Thr^7		
C(3')		109.9	CO		172.2
C(3a')		128.7	NH	8.34 (d, J = 9.1)	
H–C(4′)	7.71 $(d, J = 7.8)$	118.2	$H-C(\alpha)$	$5.41 \ (dd, J = 9.1, 2.8)$	57.6
H–C(5′)	7.15 $(t, J = 7.8)$	120.4	$H-C(\beta)$	4.65 - 4.72 (m)	67.7
H–C(6′)	7.23 (t, J = 7.8)	122.2	$Me(\gamma)$	1.63 (d, J = 6.4)	19.4

Table 2. ¹H- and ¹³C-NMR Data of **2** (at 500 and 125 MHz, resp., in C₅D₅N, J in Hz, δ in ppm)

172.3, 170.3 and 172.2 based on the observed HMBCs between CO groups and α - or β -H-atoms of the same amino acid residue, respectively.

The amino acid sequence (cyclo-(Pro¹-Ser²- Δ -Trp³-Leu⁴-Ala⁵-Gly⁶-Thr⁷)) of **2** was mainly established by the following NOESY cross-peaks: Ser²-NH/HC(α)-Pro¹, Δ -Trp³-NH/HN-Ser², Leu⁴-NH/HN- Δ -Trp³, Ala⁵-NH/HC(α)-Leu⁴, Gly⁶-NH/HN-Ala⁵, Thr⁷-NH/HN-Gly⁶, and Pro¹-C(δ)H₂/HC(α)-Thr⁷ (*Fig. 3*). The configuration of Δ -Trp residue was established as (*Z*) on the basis of the chemical shift of β -H-atom (δ (H) 8.60) of Δ -Trp [8]. This result was supported by the ROESY correlation between Δ -Trp³-C(2')H (δ (H) 8.97) and Ser²-C(α)H (δ (H) 4.98). The strong NOE correlation between Thr⁷-C(α)H and both δ_a - and δ_b -H-atoms of Pro¹ suggested the amide bond of Thr⁷-Pro¹ as *trans*. The result was further confirmed by the ¹³C chemical shifts of β - and γ -C-atoms of Pro¹ at δ (C) 29.3 and 25.2 ppm, respectively, in agreement with those of *trans*-Pro [11].

Experimental Part

General. Column chromatography (CC): macroporous resin (*Diaion HP-20*), C_{18} reversed-phase (RP) silica gel (*ODS*, 50 µm; *YMC*, Japan), silica gel (SiO₂; 200–300 mesh; *Huiyou Silical Gel Development Co. Ltd.*, Yantai, P. R. China), silica gel *H* (10–40 µm, Qingdao, P. R. China), and Sephadex LH-20 (40–70 µm; *GE Heathcare Bio-Sciences AB*, USA). TLC: *HSGF254* silica gel plates (10–40 µm, *Huiyou Silica Gel Development Co., Ltd.*, Yantai, P. R. China). Optical rotations: *Perkin-Elmer 341* polarimeter. UV Spectra: *UV-2550* UV/VIS spectrophotometer (*Shimadzu*, Japan). IR Spectra: *FT-IR 6700* spectrometer (*Nicolet*, USA), KBr pellets. 1D- and 2D-NMR spectra: *Bruker Avance 500* NMR spectrometer in C₅D₅N, δ in ppm, *J* in Hz. ESI-MS: *LC/MSD Trap XCT* (*Agilent*, USA). HR-ESI-MS: *Accurate-Mass-Q-TOF LC/MS 6520* (*Agilent*, USA).

Plant Material. The roots of *Psammosilene tunicoides* (40 kg) were collected in Lijiang, Yunnan Province, P. R. China, in 2006. The identification was performed by Prof. *Li-Shan Xie*, Kunming Institute of Botany, Chinese Academy of Sciences. A voucher specimen (herbarium No. 2006071015) is deposited with the School of Pharmacy, Second Military Medical University, P. R. China.

Extraction and Isolation. The air-dried powdered material was refluxed with 80% EtOH (10 h). The residue obtained by evaporating the solvent was partitioned between H_2O and $CHCl_3$, and then the CHCl₃-soluble extract (285 g) was subjected to CC (SiO₂ 100-200 mesh); column successively eluted with petroleum ether (PE)/AcOEt (1, 5, 10, 20, 30, and 40%; then, with 10% MeOH/CHCl₃) to yield nine fractions (F1 - F9). The H₂O-soluble extract was submitted to CC (*Diaion HP-20*; successively eluted with H₂O, 70% EtOH, and acetone) to yield two fractions: acetone fraction (35.5 g) and 70% EtOH fraction (7.5 kg). The acetone fraction was combined with the fraction F9 to afford Fr. M which was subjected to CC (MCI gel; successively eluted with H₂O, 70% MeOH, and MeOH) to yield two fractions, M-1 and M-2. Fr. M-1 was subjected to CC (SiO₂; MeOH/CHCl₃ 5, 10, 15, 20, and 30%) to give four subfractions, M-1-1 to M-1-4). Fr. M-1-2 was further purified by repeated RP silica gel (ODS) and Sephadex LH-20 CC to afford compound 1 (159 mg). Parts of the 70% EtOH fraction (1 kg) was subjected to CC (RP silica gel (ODS); eluted successively with a gradient of EtOH/H₂O) to afford six fractions, S1 to S6. Fr. S1 was further separated into three fractions, S1-1, S1-2, and S1-3 by CC on RP silica gel (ODS). Fr. S1-2 was subjected to CC (SiO2; gradient CHCl3/MeOH) to afford five fractions (S1-2-1 to S1-2-5). Fr. S1-2-3 was further purified by repeated RP silica gel (ODS) and Sephadex LH-20 CC to afford compound 2 (4 mg).

Tunicyclin F (=*cyclo*-(*Pro¹-Gly*²-*Phe*³-*Leu*⁴-*Pro*⁵-*Ala*⁶-*Phe*⁷) = *cyclo*(L-*Alanyl*-L-*phenylalanyl*-L-*pro-lylglycyl*-L-*phenylalanyl*-L-*leucylprolyl*); **1**): Colorless solid. $[a]_{D}^{20} = -74.6$ (c = 0.135, MeOH). UV (MeOH): 202. IR (KBr): 3311, 2959, 2956, 1633, 1520, 1452, 1241, 748, 700. ¹H- and ¹³C-NMR: see *Table 1*. ESI-MS: 728 ($[M - H]^{-}$), 730 ($[M + H]^{+}$). HR-ESI-MS (pos.): 730.3927 ($[M + H]^{+}$, $C_{39}H_{51}N_7O_7^+$; calc. for 730.3923).

Tunicyclin G (=*cyclo-(Pro¹-Ser²-* Δ *-Trp³-Leu⁴-Ala⁵-Gly⁶-Thr⁷*) = (3§,6Z,9§,128,188,23*a*8)-18-(1-Hydroxyethyl)-3-(hydroxymethyl)-6-[(1H-indol-3-yl)methylidene]-12-methyl-9-(2-methylpropyl)hexadecahydro-1H-pyrrolo[1,2-a][1,4,7,10,13,16,19]heptaazacyclohenicosine-1,4,7,10,13,16,19-heptone; **2**): Colorless solid. [a]^D₂₀ = -73.8 (c = 0.155, MeOH). UV (MeOH): 340. IR (KBr): 3419, 2929, 1643, 1516, 1458, 1246, 1074, 748, 561. ¹H- and ¹³C-NMR: see *Table 2*. ESI-MS: 709 ([M – H]⁻), 733 ([M + Na]⁺). HR-ESI-MS (pos.): 711.3454 ([M + H]⁺, C₃₄H₄₇N₈O⁺₇; calc. for 711.3461).

This work was supported by the program *NCET Foundation*, NSFC(30725045), partially supported by *Global Research Network for Medicinal Plants* (GRNMP) and King Saud University, *Shanghai Leading Academic Discipline Project* (B906), *FP7-PEOPLE-IRSES-2008* (TCMCANCER Project 230232), *Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products* (10DZ2251300), and the *Scientific Foundation of Shanghai China* (09DZ1975700, 09DZ1971500, 10DZ1971700).

REFERENCES

- [1] X. Y. Wang, D. W. Qiu, Z. H. Jiang, Chin. J. Basic Med. Tradit. Chin. Med. 2002, 8, 77.
- [2] X.-Y. Wang, J.-Y. Xu, D.-W. Qiu, L.-Q. Huang, Chin. J. Exper. Tradit. Med. Formulae 2006, 12, 56.
- [3] H.-M. Zhong, W. Ni, Y. Hua, Y.-Z. Chen, C.-X. Chen, Acta Bot. Yunnan. 2002, 24, 781.
- [4] Z. T. Ding, Y. C. Wang, J. Zhou, N. H. Tan, H. M. Wu, Chin. Chem. Lett. 1999, 10, 1037.
- [5] J.-M. Tian, Y.-H. Shen, X.-W. Yang, S. Liang, J. Tang, L. Shan, W.-D. Zhang, Org. Lett. 2009, 11, 1131.
- [6] J. Tian, Y. Shen, X. Yang, S. Liang, L. Shan, H. Li, R. Liu, W. Zhang, J. Nat. Prod. 2010, 73, 1987.
- [7] J. M. Tian, S. S. Ou-Yang, X. Zhang, Y. T. Di, H. L. Jiang, H. L. Li, W. X. Dai, K. Y. Chen, X. J. Hao, Y. H. Shen, C. Luo, W. D. Zhang, *RSC Adv.* **2012**, *2*, 1126.
- [8] S. Sölter, R. Dieckmann, M. Blumenberg, W. Francke, Tetrahedron Lett. 2002, 43, 3385.
- [9] Z. Hojati, C. Milne, B. Harvey, L. Gordon, M. Borg, F. Flett, B. Wilkinson, P. J. Sidebottom, B. A. M. Rudd, M. A. Hayes, C. P. Smith, J. Micklefield, *Chem. Biol.* 2002, 9, 1175.
- [10] G. Wagner, A. Kumar, K. Wüthrich, Eur. J. Biochem. 1981, 114, 375.
- [11] N.-H. Tan, J. Zhou, Chem. Rev. 2006, 106, 840.
- [12] A. Wélé, C. Mayer, Q. Dermigny, Y. Zhang, A. Blond, B. Bodo, Tetrahedron 2008, 64, 154.
- [13] F. Itagaki, H. Shigemori, M. Ishibashi, T. Nakamura, T. Sasaki, J. Kobayashi, J. Org. Chem. 1992, 57, 5540.

Received November 24, 2011